The supplementary material is intended to provide mathematical details the text leaves out for clarity. We begin with a section describing how we approximate genotype frequencies from allele frequencies. We then calculate fitness for the autosomal case. We repeat the calculations for an X-linked allele. We add additional details of equilibria calculations and we attach the Maple code for the equilibria calculations. Finally, we include supplementary figures.
I. Understanding the relationship between genotype frequency and Medea allele frequency (pg. 2)
II. Fitness Calculations (pg. 4)
III. Genotype Fitness (pg. 6)
IV. Allele Fitness (pg. 7)
V. Population Fitness (pg. 7)
VI. X Chromosome (pg. 8)
VII. X Chromosome Fitness (pg. 8)
VIII. X Chromosome Allele Fitness (pg. 10)
IX. X Chromosome Population Fitness (pg. 10)
X. Equilibria Calculations (pg. 11)
XI. Equilibria with Embryonic Fitness Costs (pg. 11)
XII. Equilibria with Parental Fitness Costs (pg. 13)
XIII. Equilibria with Maternal Fitness Costs (pg. 14)
XIV. Equilibria with Embryonic Fitness Costs and t_{1} (pg. 15)
XV. Equilibria with X-linked Element (pg. 16)
XVI. Maple code for Equilibria of an Autosomal Element (pg. 20)
XVII. Maple code for Equilibria of an X-linked Element (pg. 50)
XVIII. Supplemental Figures (pg. 54)

I. Understanding the relationship between genotype frequency and Medea allele

frequency.

In a Medea-bearing population the fate of an individual depends on the genotype of its mother as well as its own genotype. Thus, knowledge of one genotype frequency after a single round of random mating is not sufficient to characterize the population.

We approach this problem first by presenting an example, a Medea with a 20% multiplicative embryonic fitness cost. We plot, on a DeFinetti diagram, the trajectories of genotype frequencies over 1000 generations when present in a population initially composed of different proportions of Medea homozygotes and non-Medea individuals (points along the horizontal axis), non-Medea individuals and Medea heterozygotes (points along the left axis), or Medea homozygotes and heterozygotes (points along the right axis) (Fig. S1A). For this set of parameters, all populations converge to one of two stable equilibrium points, composed of either non-Medea individuals, or of two thirds Medea homozygotes and one third Medea heterozygotes, the stable internal equilibrium allele frequency (SIEAF) (Fig. S1A). The regions of initial conditions that converge to each stable equilibrium are separated by a set of gamete frequencies, known as a separatrix, that define a threshold between Medea allele loss and fixation. The separatrix is the stable manifold of the unstable equilibrium (a saddle). This family of points includes one, the unstable internal equilibrium allele frequency (the UIEAF), discussed further below. Importantly, all populations initiating on either side of the separatrix approach and ultimately follow a common trajectory in moving towards one or the other stable equilibrium (the common trajectory is the unstable manifold of the unstable equilibrium). This observation implies that one can calculate genotype frequencies, and thus allele fitness, as a
function of Medea allele frequency, by calculating the approximate positions of points on this common trajectory. To do this we take a number of starting parental genotypes distributed throughout the parameter space of all possible parental genotypes, indicated by the black dots in the DeFinetti diagrams in Fig. S1B. Each genotype in the distribution is advanced one generation and all possible genotype distributions for that generation are plotted, indicated by the green region. The procedure is repeated for a second generation, resulting in the region of possible genotypes indicated in red; for a third generation, resulting in the region of possible genotypes indicated in yellow; and for a fourth generation, resulting in the region of possible genotypes indicated in blue. After four generations the genotype space distribution is very tight (the blue region that resembles a line in Fig. S1B). Throughout the remainder of the text we use the constrained values of genotype space during the fourth generation to calculate genotype frequencies and fitness values with respect to Medea allele frequency. Plots of genotype or fitness as a function of Medea allele frequency (as in Fig. 1A,C; Fig. 4B; Fig. 5A) which appear line-like, are not one-dimensional lines, but narrow two-dimensional bands around a line. Places where the bands cross are not points but small areas.

II. Fitness Calculations

By fitness of a particular genotype we mean the average number of progeny a zygote of that genotype will have, given a particular zygote genotype distribution. A zygote with a fitness of 1 exactly replaces itself (has one progeny). Fitness of a particular allele refers to the average number of progeny an individual with that allele will have, given a particular genotype distribution. Fitness has three components. 1) The ability of an organism to survive to reproductive maturity, $l_{\text {genotype }}$. This is the embryonic fitness. 2) The ability of an organism to make gametes (a parental fertility or fecundity loss), $m_{\text {genotype. }}$ 3) A component specific to Medea, the ability of the gametes to survive fusion to form a viable zygote, $n_{\text {gametetype }}$. In order to calculate fitness we must track the fate of the 8 types of gametes. Gametes have 3 essential attributes, 1) whether they are sperm or egg, 2) whether they carry the Medea or non-Medea allele and 3) the genotype of the gamete's parent.

To find fitnesses, we begin by finding the distribution of gametes given a distribution of zygotes. We start by introducing the following terminology. A zygote has already undergone death by the Medea mechanism but has not experienced any fitness costs.
 homozygous non-Medea, heterozygous for Medea, or homozygous Medea, respectively. Egg/sperm sub gamete genotype, gamete’s parent's genotype. Gamete genotype can be p or q for Medea and non Medea respectively. Gamete's parent's genotype can be MM, M^{+}, or ++ for homozygous Medea, heterozygous Medea and homozygous non-Medea, respectively. For example, we define $s p m_{q^{+}}$as the the fraction of male gametes that are
non-Medea from a non-Medea parent. V_{P} is the parental fitness cost. In the case of an egg, it is V_{D} and in the case of a sperm it is V_{S}. We do not consider the case where V_{D} is not equal to V_{s}. Mathematically,

$$
\begin{aligned}
& \text { egg }_{q++}=\text { spm }_{q++}=\frac{\text { zygote }_{++}}{\text {zygote }_{++}+\text {zygote }_{M+} V_{E} V_{P}+\text { zygote }_{M M} V_{E}^{2} V_{P}^{2}} \\
& \text { egg }_{q M+}=\text { egg }_{p M+}=\text { spm }_{q M+}=\text { spm }_{p M+}=\frac{\frac{1}{2} \text { zygote }_{M+} V_{E} V_{P}}{\text { zygote }_{++}+\text {zygote }_{M+} V_{E} V_{P}+\text { zygote }_{M M} V_{E}^{2} V_{P}^{2}} \\
& \text { egg }_{p M M}=\text { spm }_{p M M}=\frac{\text { zygote }_{M M} V_{E}^{2} V_{P}^{2}}{\text { zygote }_{++}+\text {zygote }_{M+} V_{E} V_{P}+\text { zygote }_{M M} V_{E}^{2} V_{P}^{2}}
\end{aligned}
$$

Now we examine the fitness of each type of gamete (part 3). To find fitness, we examine the fate of the gamete when it joins with all other possible gametes. For example, a nonMedea sperm from a non-Medea parent will always survive when it joins a non-Medea egg from a non-Medea parent, will die a fraction (1-t t_{0} of the time when it joins a nonMedea egg from a heterozygous parent, will always survive when it joins a Medea egg from a heterozygous parent, and will die a fraction (1-t t_{1}) of the time when it joins a Medea egg from a homozygous Medea female. To find the fitness of the genotype, we find the mean of the fitness of sperm and egg of the same genotype.

$$
\begin{aligned}
& n_{\text {spermq }++}=e g g_{q++}+\text { egg }_{q M+}\left(1-t_{0}\right)+e g g_{p M+}+\text { egg }_{p M M}\left(1-t_{1}\right) \\
& n_{\text {eggq++ }}=\operatorname{spm}_{q++}+\operatorname{spm}_{q M+}+s p m_{p M+}+s p m_{p M M} \\
& n_{q++}=\frac{1}{2}\left(n_{\text {spermq++ }}+n_{\text {egga++ }}\right)
\end{aligned}
$$

$$
\begin{aligned}
& n_{\text {spermqM }+}=e g g_{q_{++}}+e g g_{q M+}\left(1-t_{0}\right)+e g g_{p M+}+e g g_{p M M}\left(1-t_{1}\right) \\
& n_{\text {eggqM }+}=\operatorname{spm}_{q++}\left(1-t_{0}\right)+s p m_{q M+}\left(1-t_{0}\right)+s p m_{p M+}+s p m_{p M M} \\
& n_{q M+}=\frac{1}{2}\left(n_{\text {sperma } M+}+n_{\text {eggqM }+}\right) \\
& n_{\text {spermpM }+}=e g g_{q++}+e g g_{q M+}+e g g_{p M+}+e g g_{p M M} \\
& n_{\text {eggp } M_{+}}=s p m_{q_{++}}+s p m_{q M+}+s p m_{p M+}+s p m_{p M M} \\
& n_{q M+}=\frac{1}{2}\left(n_{\text {spermqM }+}+n_{\text {eggqM }+}\right) \\
& n_{\text {spermpMM }}=e g g_{q++}+e g g_{q M+}+e g g_{p M+}+e g g_{p M M} \\
& n_{\text {eggpMM }}=\operatorname{spm}_{q++}\left(1-t_{1}\right)+\operatorname{spm}_{q M+}\left(1-t_{1}\right)+s p m_{p M+}+s p m_{p M M} \\
& n_{\text {qMM }}=\frac{1}{2}\left(n_{\text {spermqMM }}+n_{\text {eggqMM }}\right)
\end{aligned}
$$

III. Genotype fitness

The genotype fitness is calculated by multiplying each component of fitness.
fitness $_{\text {hom orygousMedea }}=l_{M M} m_{M M} n_{p M M}$
fitness heterorygousMedea $=\frac{1}{2} l_{M+} m_{M+}\left(n_{p M+}+n_{q M+}\right)$
fitness $_{\text {hom orygousnonMedea }}=l_{++} m_{++} n_{p++}$

IV. Allele fitness

The Medea allele fitness is calculated by finding the fitness of the heterozygote multiplied by the fraction of Medea alleles in heterozygotes and adding the fitness of homozygous Medea multiplied by the fraction of Medea alleles in homozygotes. Fitness of the non-Medea allele is calculated similarly.

$$
\begin{aligned}
& \text { fitness }_{\text {MedeaAllele }}=l_{M+} m_{M+} n_{p M+} \frac{\text { zygote }_{M+}}{\text { zygote }_{M+}+2 \text { zygote }_{M M}}+l_{M M} m_{M M} n_{p M M} \frac{2 \text { zygote }_{M M}}{\text { zygote }_{M+}+2 z y g o t e} e_{M M} \\
& \text { fitness }_{\text {nonMedeaAllele }}=l_{M+} m_{M+} n_{p M+} \frac{2 \text { zygote }_{M+}}{\text { zygote }_{M+}+2 \text { zygote }_{++}}+l_{++} m_{++} n_{p++} \frac{2 \text { zygote }_{++}}{\text {zygote }_{M+}+2 \text { zygote }_{++}}
\end{aligned}
$$

V. Population fitness

The population fitness is the sum of the products of each genotype and the fraction of zygotes with that genotype.

$$
\begin{gathered}
\text { fitness }_{\text {population }}=\text { zygote }_{\text {MM }} \text { fitness }_{\text {hom ozygousMedea }}+\text { zygote }_{M+} \text { fitness }_{\text {heterozygousMedea }}+ \\
\text { zygote }_{++} \text {fitness } \\
\text { hom ozgousnonMedea }
\end{gathered}
$$

VI. X chromosome

An X-linked Medea is different from autosomal Medea in that the ratio of males to females is not 1 to 1 . There are only 2 male genotypes Medea Y and non-Medea Y .

	Parental Genotype Frequency		Male Offspring Frequency		Female Offspring Frequency			
Family	Male	Female	Mating	Medea	non-Medea	Homo	Het	WT
1	$\mathrm{~S}_{\mathrm{MY}}$	D_{MM}	$\mathrm{S}_{\mathrm{MY}} * \mathrm{D}_{\mathrm{MM}}$	V_{E}		$\mathrm{V}_{\mathrm{E}}{ }^{2}$		
2	$\mathrm{~S}_{+\mathrm{Y}}$	D_{MM}	$\mathrm{S}_{+\mathrm{Y}} * \mathrm{D}_{\mathrm{MM}}$	V_{E}			V_{E}	
3	$\mathrm{~S}_{\mathrm{MY}}$	$\mathrm{D}_{\mathrm{M}+}$	$\mathrm{S}_{\mathrm{MY}} * \mathrm{D}_{\mathrm{M}+}$	$1 / 2 \mathrm{~V}_{\mathrm{E}}$	$1 / 2$	$1 / 2 \mathrm{~V}_{\mathrm{E}}^{2}$	$1 / 2 \mathrm{~V}_{\mathrm{E}}$	
4	$\mathrm{~S}_{+\mathrm{Y}}$	$\mathrm{D}_{\mathrm{M}+}$	$\mathrm{S}_{+\mathrm{Y}} * \mathrm{D}_{\mathrm{M}+}$	$1 / 2 \mathrm{~V}_{\mathrm{E}}$	$1 / 2$		$1 / 2 \mathrm{~V}_{\mathrm{E}}$	$1 / 2$
5	$\mathrm{~S}_{\mathrm{MY}}$	D_{++}	$\mathrm{S}_{\mathrm{MY}} * \mathrm{D}_{++}$		1		$\mathrm{~V}_{\mathrm{E}}$	
6	$\mathrm{~S}_{+\mathrm{Y}}$	D_{++}	$\mathrm{S}_{+\mathrm{Y}} * \mathrm{D}_{++}$		1			1

Equations are shown in the text.

VII. X Chromosome Fitness:

We use the same definitions of fitness and symbols as defined in the autosomal fitness cost case.
egg $_{q++}=\frac{\text { femalezygote }_{++}}{\text {femalezygote }_{++}+\text {femalezygote }_{M+} V_{E}+\text { femalezygote }_{M M} V_{E}^{2}}$
egg $_{q M+}=$ egg $_{p M+}=\frac{\frac{1}{2} \text { femalezygote }_{M+} V_{E}}{\text { femalezygote }_{++}+\text {femalezygote }_{M+} V_{E}+\text { femalezygote }_{M M} V_{E}^{2}}$
egg $_{p M M}=\operatorname{spm}_{p M M}=\frac{\text { femalezygote }_{M M} V_{E}^{2} V_{P}^{2}}{\text { femalezygote }_{++}+\text {femalezygote }_{M+} V_{E}+\text { femalezygote }_{M M} V_{E}^{2}}$

$$
\begin{aligned}
& \text { spm }_{q+Y}=\frac{\frac{1}{2} \text { malezygote }_{+Y}}{\text { malezygote }_{+Y}+\text { malezygote }_{M Y} V_{E}} \\
& \text { spm }_{Y+Y}=\frac{\frac{1}{2} \text { malezygote }_{+Y}}{\text { malezygote }_{+Y}+\text { malezygote }_{M Y} V_{E}} \\
& \text { spm }_{p M Y}=\frac{\frac{1}{2} \text { malezygote }_{M Y} V_{E}}{\text { malezygote }_{+Y}+\text { malezygote }_{M Y} V_{E}} \\
& \text { spm }_{Y M Y}=\frac{\frac{1}{2} \text { malezygote }_{M Y} V_{E}}{\text { malezygote }_{+Y}+\text { malezygote }_{M Y} V_{E}}
\end{aligned}
$$

Now we examine the fitness of each type of gamete (part 3). To find fitness, we examine the fate of the gamete when it joins with all other possible gametes.

$$
\begin{aligned}
& n_{\text {spermq }+Y}=\text { egg }_{q++}+e g g_{p M+}+e g g_{p M M} \\
& n_{\text {eggq }+Y}=s p m_{q+Y}+s p m_{Y+Y}+s p m_{p M Y}+s p m_{Y M Y} \\
& n_{\text {spermYM }+}=e g g_{q++}+e g g_{p M+}+e g g_{p M M} \\
& n_{\text {eggqM }+}=\operatorname{spm}_{p M Y}
\end{aligned}
$$

$$
n_{\text {spermpM }+}=e g g_{q++}+e g g_{q M+}+e g g_{p M+}+e g g_{p M M}
$$

$$
n_{\text {eggp } M+}=s p m_{q+Y}+s p m_{Y M Y}+s p m_{p M Y}+s p m_{Y+Y}
$$

$$
n_{\text {spermpMY }}=e g g_{q++}+e g g_{q M+}+e g g_{p M+}+e g g_{p M M}
$$

$$
n_{e g g p M M}=s p m_{q+Y}+s p m_{q M Y}+s p m_{p M Y}+s p m_{p M Y}
$$

VIII. X Chromosome Allele fitness

The Medea allele fitness is calculated by finding the fitness of the heterozygous females multiplied by the fraction of Medea alleles in heterozygous, adding the fitness of homozygous Medea females multiplied by the fraction of Medea alleles in a homozygous female Medea background and adding the fitness of male Medea individuals and multiplying by the fraction of Medea alleles in a male Medea background. Fitness of the non-Medea allele and Y are calculated similarly.

IX. X Chromosome Population fitness

The population fitness is the sum of the fitness of each genotype multiplied by the fraction of zygotes with that genotype.

X. Equilibria Calculations

The attached code calculates equilibrium values and stability for both autosomal and Xlinked Medea. The code contains much of the output. Some of the equilibria take many pages to output; therefore that output has been suppressed. Some calculations take minutes to days to run on a PC with 2 gigabytes of RAM with and an Intel \circledR^{\circledR} Core $2^{\text {TM }}$ CPU . We provide appropriate warnings.

Here we provide a summary of the calculations with more details than are present in the text. Some cumbersome equations are not reproduced. Equilibria are calculated by simultaneously solving $G_{++}^{\prime}=G_{++}$and $G_{M M}^{\prime}=G_{M M}$. To find stability, the modulus of the eigenvalues of the Jacobian must be less than 1 .

Recall the Jacobian matrix is defined as

$$
\left(\begin{array}{ll}
\frac{\partial G_{M M}^{\prime}}{\partial G_{M M}^{\prime}} & \frac{\partial G_{M M}^{\prime}}{\partial G_{++}} \\
\frac{\partial G_{++}^{\prime}}{\partial G_{M M}} & \frac{\partial G_{++}^{\prime}}{\partial G_{++}}
\end{array}\right) .
$$

XI. Embrynoic Fitness Costs

$V_{D, \text { Het }}=V_{D, \text { Homo }}=V_{S, \text { Het }}=V_{S, \text { Homo }}=1, t_{1}=0, t_{0}=1$

There are 4 equilibria.

1. $G_{++}=1, G_{M+}=G_{M M}=0$

The eigenvalues are
$\binom{0}{V_{E, H e t}}$
2. $G_{++}=-\frac{V_{E, \text { Het }}^{2}-V_{E, \text { Het }}+V_{E, \text { Homo }}}{-V_{E, \text { Homo }}+V_{E, \text { Het }}-1}$
$G_{M M}=-\frac{1+V_{E, \text { Het }}^{2}-2 V_{E, \text { Het }}}{-V_{E, \text { Homo }}+V_{E, \text { Het }}-1}$
Feasibility:
Using $G_{++}=0$
$V_{E, \text { Homo }} \geq V_{E, \text { Het }}-V_{E, \text { Het }}^{2}$
Using other genotype boundaries, no additional feasibility conditions are found.
Stability: the eigenvalues are cumbersome expressions (see expression 22 in the maple code).
In the biologically feasible realm, the modulus of each eigenvalue is equal to 1 when $V_{E, \text { Het }}=1$ and $V_{E, \text { Homo }}=V_{E, \text { Het }}-V_{E, \text { Het }}^{2}$. These boundaries are coincident with feasibility. Except at boundaries, all feasible solutions are unstable.
3. $G_{++}=0$
$G_{M M}=\frac{V_{E, \text { Homo }}}{2 V_{E, \text { Het }}-V_{E, \text { Homo }}}$
Biological feasibility:
$V_{E, \text { Het }} \geq V_{E, \text { Homo }}$
The eigenvalues are

$$
\binom{\frac{-V_{E, \text { Homo }}+V_{E, \text { Het }}}{V_{E, \text { Het }}^{2}}}{\frac{V_{E, \text { Homo }}}{V_{E, \text { Het }}}}
$$

The second eigenvalue shows a change in stability that is coincident with feasibility. Therefore, no examination $V_{E, \text { Het }} \geq V_{E, \text { Homo }}$ is necessary.

The modulus of the first eigenvalue equals 1 when
$V_{E, \text { Homo }}=V_{E, \text { Het }}+V_{E, \text { Het }}^{2}$ and $V_{E, \text { Homo }}=V_{E, \text { Het }}-V_{E, \text { Het }}^{2}$
The first solution is never biologically feasible. The second solution is stable when
$V_{E, \text { Homo }}>V_{E, \text { Het }}-V_{E, \text { Het }}^{2}$.
4. $G_{++}=0, G_{M^{+}}=0, G_{M M}=1$

The eigenvalues are
$\binom{0}{\frac{V_{E, \text { Het }}}{V_{E, \text { Homo }}}}$
The stability boundary is
$V_{E, \text { Het }}=V_{E, \text { Homo }}$

Stability occurs when
$V_{E, \text { Het }}<V_{E, \text { Ното }}$

XII. Parental Fitness Costs

$V_{D, \text { Het }}=V_{S, \text { Het }}, V_{D, \text { Homo }}=V_{S, \text { Homo }}, V_{E, \text { Homo }}=V_{E, \text { Het }}=1, t_{1}=0, t_{0}=1$

Stability and feasibility analysis yields the same boundaries as with embryonic costs. Detailed analysis is shown in Maple Code. As noted in the text, the equilibrium values are different from those associated with embryonic costs.

XIII. Maternal Fitness Costs

$V_{E, \text { Het }}=V_{S, \text { Het }}=V_{E, \text { Homo }}=V_{S, \text { Homo }}=1, t_{1}=0, t_{0}=1$

1. $G_{++}=1, G_{M+}=G_{M M}=0$

The eigenvalues are
2. $G_{++}=0$
$G_{M M}=\frac{V_{D, \text { Homo }}-V_{D, \text { Het }} \pm \sqrt{V_{D, \text { Homo }}^{2}-2 V_{D, \text { Het }} V_{D, \text { Homo }}+2 V_{D, \text { Het }}^{2}}}{V_{D, \text { Het }}}$
Only the (${ }^{+}$) solution is relevant, when $V_{D, \text { Неt }} \geq V_{D, \text { Ното }}$
Stability:
The only boundary condition other than feasibility is
$V_{D, \text { Homo }}=\frac{V_{D, \text { Het }}^{2}-V_{D, \text { Het }}+1-\sqrt{4 V_{D, \text { Het }}^{3}-7 V_{D, \text { Het }}^{2}+2 V_{D, \text { Het }}+1}}{V_{D, \text { Het }}-2}$. This equilibrium is stable when
homozygous fitness is greater than the expression.
3. The all genotypes equilibrium is a very cumbersome expression. However, by solving for no non-Medea individuals in the population, we find that the biological feasibility boundary is the same as the stability boundary for equilibrium 2. There are no other stability boundaries. The equilibrium is always unstable when feasible.
4. $G_{++}=0, G_{M M}=1$

The eigenvalues are
$\binom{0}{\frac{V_{D, \text { Homo }}+V_{D, \text { Het }}}{2 V_{D, \text { Homo }}}}$
This equilibrium is stable when $V_{D, \text { Het }}>V_{D, \text { Homo }}$

Figure S 2 partitions ($V_{\text {Het }}, V_{\text {Homo }}$) fitness parameter space into regions in which linear stability analysis indicate qualitatively similar behaviors are observed. The case for embryonic fitness costs is illustrated in Fig. S2A (see also Fig. 2); the case of maternal fitness costs is illustrated in Figure S2B.

XIV. Embryonic Fitness Costs and \boldsymbol{t}_{1}

$V_{D, \text { Het }}=V_{D, \text { Homo }}=V_{S, \text { Het }}=V_{S, \text { Homo }}=1, t_{1}=0, t_{0}=1$

There are 4 equilibria.

1. $G_{++}=1, G_{M+}=G_{M M}=0$

The eigenvalues are
$\binom{0}{V_{E, H e t}}$
2. $G_{++}=-\frac{V_{E, \text { Het }}^{3} t_{1}^{2}-4 V_{E, \text { Het }}^{2} t_{1}-2 V_{E, \text { Het }} t_{1}+8 V_{E, \text { Het }}-4+2 t_{1}}{t_{1}^{2} V_{E, \text { Het }}^{4}-4 V_{E, \text { Het }}^{3} t_{1}+4 V_{E, \text { Het }}^{2}+2 V_{E, \text { Het }}^{2} t_{1}-4 V_{E, \text { Het }}-2 V_{E, \text { Het } t_{1}+4}}$

$$
G_{M M}=-\frac{4\left(-2 V_{E, \text { Het }}\right)+1+V_{E, \text { Het }}^{2}}{t_{1}^{2} V_{E, H e t}^{4}-4 V_{E, \text { Het }}^{3} t_{1}+4 V_{E, H e t}^{2}+2 V_{E, \text { Het }}^{2} t_{1}-4 V_{E, \text { Het }}-2 V_{E, \text { Het }} t_{1}+4}
$$

Feasibility:
Using $G_{++}=0$
$t_{1}=\frac{2 V_{E, \text { Het }}^{2}+V_{E, \text { Het }}+1 \pm \sqrt{-4 V_{E, \text { Het }}^{4}+8 V_{E, \text { Het }}^{3}-3 V_{E, \text { Het }}^{2}-2 V_{E, \text { Het }}+1}}{V_{E, \text { Het }}^{3}}$

Only the (-) solution is relevant.

Stability: No eigenvalues are less than or equal to 1 within the biologically feasible region.
Therefore the equilibrium is unstable.
3. $G_{++}=0$
$G_{M M}=-\frac{V_{E, \text { Het }}-1 \pm \sqrt{1-2 V_{E, \text { Het }} t_{1}}}{V_{E, \text { Het }}+2 t_{1}-2}$
Only the (+) solution is biologically relevant.
Biological feasibility:
$V_{E, \text { Het }} \leq 1-\frac{1}{2} t_{1}$
The eigenvalues are cumbersome functions that are not reproduced here - see Maple code.

The modulus of the first eigenvalue equals 1 when
(a) $V_{E, H e t}=1-\frac{1}{2} t_{1}$,
(b) $V_{E, H e t}=\frac{1}{2 t_{1}}$,
(c) $V_{E, H e t}=-\frac{-\frac{1}{2}-\frac{1}{2} \sqrt{1+4 t_{1}}+t_{1}}{t_{1}}$,
(d) $t_{1}=\frac{2 V_{E, H e t}^{2}+V_{E, H e t}-1+\sqrt{-4 V_{E, H e t}^{4}+8 V_{E, H e t}^{3}-3 V_{E, H e t}^{2}-2 V_{E, H e t}+1}}{V_{E, H e t}^{3}}$

In case (a), this is the feasibility boundary.
In case (b), this solution is entirely outside the range of biological feasibility.
In case (c), no change of stability is found after passing this curve.
In case (d), solutions are stable above the curve and unstable below it.
No additional boundaries are found with solutions of the second eigenvalue.
4. $G_{++}=0, G_{M^{+}}=0, G_{M M}=1$

The eigenvalues are
$\binom{0}{-\frac{t_{1}-2}{2 V_{E, \text { Het }}}}$
The stability boundary is
$V_{E, H e t}=1-\frac{1}{2} t_{1}$
Stability occurs when
$V_{E, \text { Het }}<1-\frac{1}{2} t_{1}$

Figure S3 partitions ($t_{1}, V_{H e t}$) parameter space for embryonic and parental fitness costs (Fig. S3A), or maternal fitness costs (Fig. S3B) into regions in which linear stability analysis indicates qualitatively similar behaviors are observed. Qualitative behavior changes as we cross each of these curves, with the occurrence of a bifurcation, as described in the legend to Fig. 2 and Fig. S2.

XV. X-linked Element

1. $D_{M M}=0 ; D_{M+}=0 ; D_{++}=1 / 2 ; S_{M Y}=0 ; S_{+Y}=1 / 2$

The eigenvalues are $0,-.5 V$ and V. This equilibrium is always stable except when the fitness equals 1.
2. All genotypes. See Maple Code for expressions for the genotype fractions at equilibrium. This equilibrium is unstable. The Maple code shows this by plotting the modulus of the eigenvalues for all possible fitnesses.
3. No non-Medea individuals
$D_{M M}=-\frac{V_{E, \text { Het }}}{V_{E, \text { Het }}-2}$
$D_{M+}=\frac{2 V_{E, \text { Het }}-1}{V_{E, H e t}-2}$
$D_{++}=0$
$S_{++}=0$

This equilibrium only exists for fitness values greater than or equal to 0.5 . The eigenvalues are 0 and $2 V_{E, H e t}$. This equilibrium is stable when it exists, except at the boundaries where the analysis is inconclusive.
4. No non-Medea alleles.
$D_{M M}=\frac{V_{E, \text { Het }}}{V_{E, \text { Het }}+1}$
$D_{M+}=0$
$D_{++}=0$
$S_{++}=0$
The eigenvalues are 0 and $\frac{1}{2 V_{E, H e t}}$. Therefore this equilibrium is stable for fitnesses greater than 0.5 , and unstable for lower fitnesses; stability at the equality is inconclusive.

```
#Ward, Catherine
#Supplemental Materials: Calculations for feasibility and
stability of autosomal Medeas
#This is a long file organized into 5 sections:
#1) Loading the Model
#2) Embryonic only fitness costs starts after execution group
(2).
#3) Maternal only fitness costs starts after execution group
(35).
#4) Parental fitness costs starts after execution group (72)
#5) t1 fitness cost starts after execution group (95).
#Each section begins with simplifying assumptions. We calculate
equilibria. Then we look at the feasibility of the equilibrium
through parameter space. Then we calculate the stability by
finding conditions such that the eigenvalues of the Jacobian
matrix have modulus one (potential boundaries for stability
changes). There are usually several pages of analysis to
determine which potential boundaries are biologically relevant
(ie, fitness between O and 1). Having determined all boundary
conditions, we check the stability of the equilibrium in each
region of space.
restart: clear: with(LinearAlgebra) : with(SolveTools) :
```

\#We begin by defining the general equations.
\#Terms are as defined in the text except the next generation is nextGmm rather than Gmm', non-Medea individuals are Gpp, heterozygotes are Gmp rather than $G m+$ and, of course, suscripts are not used.
$W:=$ VEHomo $\cdot\left(\right.$ Gmm \cdot Gmm \cdot VSHomo \cdot VDHomo $+\left(\frac{1}{2}\right) \cdot$ Gmp \cdot Gmm \cdot VSHet \cdot VDHomo $+\left(\frac{1}{2}\right) \cdot$ Gmm \cdot Gmp \cdot VSHomo \cdot VDHet $+\left(\frac{1}{4}\right) \cdot$ Gmp \cdot Gmp \cdot VSHet \cdot VDHet $)+$ VEHet $\cdot\left(\left(\frac{1}{2}\right) \cdot\right.$ Gmp \cdot Gmm \cdot VSHet \cdot VDHomo \cdot mul + Gpp \cdot Gmm \cdot VDHomo $\cdot m u 1+\left(\frac{1}{2}\right) \cdot G m m$ \cdot Gmp \cdot VSHomo \cdot VDHet $+\left(\frac{1}{2}\right) \cdot$ Gmp \cdot Gmp \cdot VSHet \cdot VDHet $+\left(\frac{1}{2}\right) \cdot$ Gpp \cdot Gmp \cdot VDHet

$$
\begin{align*}
& \left.+ \text { Gmm } \cdot \text { Gpp } \cdot \text { VSHomo }+\left(\frac{1}{2}\right) \cdot \text { Gmp } \cdot \text { Gpp } \cdot \text { VSHet }\right)+\left(\frac{1}{4}\right) \cdot \text { Gmp } \cdot \text { Gmp } \cdot \text { VSHet } \cdot \text { VDHet } \\
& \cdot m u 0+\left(\frac{1}{2}\right) \cdot G p p \cdot G m p \cdot \text { VDHet } \cdot m u 0+\left(\frac{1}{2}\right) \cdot \text { Gmp } \cdot \text { Gpp } \cdot \text { VSHet }+ \text { Gpp } \cdot \text { Gpp }: \\
& {\left[\begin{array}{rr}
\hline> & \\
> & \text { nextGmm }:=\operatorname{subs}(\text { Gmp }=1-\text { Gmm } \\
& +\left(\frac{1}{2}\right) \cdot \text { Gmp } \cdot \text { Gmm } \cdot \text { VSHet } \cdot \text { VD } \\
& \\
& \text { Gmp } \cdot \text { Gmp } \cdot \text { VSHet } \cdot \text { VDHet })):
\end{array}\right.} \\
& \text { nextGmp }:=\operatorname{subs}\left(G m p=1-\text { Gmm }- \text { Gpp, } \frac{\text { VEHet }}{W} \cdot\left(\frac{1}{2}\right) \cdot \text { Gmp } \cdot \text { Gmm } \cdot \text { VSHet } \cdot \text { VDHomo } \cdot\right. \text { mul } \\
& + \text { Gpp } \cdot \text { Gmm } \cdot \text { VDHomo } \cdot \text { mu1 }+\left(\frac{1}{2}\right) \cdot \text { Gmm } \cdot \text { Gmp } \cdot \text { VSHomo } \cdot \text { VDHet }+\left(\frac{1}{2}\right) \cdot \text { Gmp } \cdot \text { Gmp } \\
& \cdot \text { VSHet } \cdot \text { VDHet }+\left(\frac{1}{2}\right) \cdot \text { Gpp } \cdot \text { Gmp } \cdot \text { VDHet }+ \text { Gmm } \cdot \text { Gpp } \cdot \text { VSHomo }+\left(\frac{1}{2}\right) \cdot \text { Gmp } \cdot \text { Gpp } \\
& \text { •VSHet) : } \\
& \text { nextGpp }:=\operatorname{subs}\left(G m p = 1 - \text { Gmm } - \text { Gpp, } \frac { 1 } { W } \left(\left(\frac{1}{4}\right) \cdot \text { Gmp } \cdot \text { Gmp } \cdot \text { VSHet } \cdot \text { VDHet } \cdot m u 0\right.\right. \\
& \left.\left.+\left(\frac{1}{2}\right) \cdot \text { Gpp } \cdot \text { Gmp } \cdot V D H e t \cdot m u 0+\left(\frac{1}{2}\right) \cdot \text { Gmp } \cdot \text { Gpp } \cdot V S H e t+G p p \cdot G p p\right)\right): \\
& \text { \#We now give the code that will generate the general solutions. } \\
& \text { The general solution is too complex to be useful. A PC with } 2 \\
& \text { gigs of RAM takes days to solve this and then crashes if any } \\
& \text { further manipulations are attempted. Macs with } 5 \text { gigs of RAM } \\
& \text { simply do not run this calculation. } \\
& \# g e n E q:=\operatorname{solve}(\{\text { nextGpp }=G p p, \text { nextGmm }=G m m\},[G p p, G m m]) \text { : } \\
& \text { \#In order to do linear stability analysis we find the Jacobian } \\
& \text { Matrix } \\
& \text { MyJacobian }:=\operatorname{simplify}(\text { Matrix }([[\operatorname{diff}(\text { nextGmm, Gmm), diff(nextGmm, Gpp)], } \\
& \text { [diff (nextGpp, Gmm), } \operatorname{diff}(\text { nextGpp, Gpp)]])) : } \\
& \text { \#For the two trivial solutions to the general equation (no non- } \\
& \text { Medea alleles and no Medea alleles), we present the stability } \\
& \text { analysis. } \\
& \text { \#First no Medea alleles } \\
& \text { simplify (Eigenvalues(subs(Gpp }=1, G m p=0, G m m=0, \text { MyJacobian })) \text {); } \\
& {\left[\begin{array}{c}
0 \\
\frac{1}{2} \text { VEHet VDHet }+\frac{1}{2} \text { VEHet VSHet }
\end{array}\right]} \tag{1}
\end{align*}
$$

> \#No non-Medea alleles
$>\operatorname{simplify}($ Eigenvalues $(\operatorname{subs}(G p p=0, G m p=0, G m m=1$, MyJacobian $))$);

$$
\left[\begin{array}{c}
0 \tag{2}\\
\frac{1}{2} \frac{\text { VEHet (VSHet VDHomo } \mu 1+\text { VSHomo VDHet })}{\text { VSHomo VDHomo VEHomo }}
\end{array}\right]
$$

\#Now we present the stability analysis for a selection of simplifications
\#Case 1) Embryonic Fitness Cost, No parental effects; mu0=0 and mul=1
\#We begin by introducing the simplified senarios
nextGppEmbryonic $:=\operatorname{subs}(V S H o m o=1, V D H o m o=1$, VSHet $=1, V D H e t=1, \mu 0=0, \mu 1=1$, nextGpp) :
nextGmmEmbryonic $:=\operatorname{subs}(V S H o m o=1, V D H o m o ~=1$, VSHet $=1$, VDHet $=1, \mu 0=0, \mu 1$ $=1$, nextGmm) :
nextGmpEmbryonic $:=\operatorname{subs}($ VSHomo $=1$, VDHomo $=1$, VSHet $=1$, VDHet $=1, \mu 0=0, \mu 1$ $=1$, nextGmp) :
\#Solve for the 4 biologically relevant equilibria
embryonicEq $:=$ solve $(\{$ nextGppEmbryonic $=$ Gpp, nextGmmEmbryonic $=G m m\},[G p p$, Gmm]) :
\#Medea Homozygous Equilibrium
embryonicEq[1];

$$
\begin{equation*}
[G p p=0, G m m=1] \tag{3}
\end{equation*}
$$

simplify (Eigenvalues(subs (embryonicEq[1],VSHomo $=1$, VDHomo $=1$, VSHet $=1$, VDHet $=1, \mu 0=0, \mu l=1$, My Jacobian $)$) ;

$$
\left[\begin{array}{c}
0 \tag{4}\\
\frac{\text { VEHet }}{\text { VEHomo }}
\end{array}\right]
$$

\#Note the conditions for stability are the modulus of each of the eigenvalues must be less than 1 . This equilibrium is stable when VEHomo>VEHet, unstable VEHet>VEHomo, and the linear analysis is inconclusive at the equality. Recall, VEHet and VEHomo must both be non-negative.
$[>$ \#No non-Medea Genotype Equilibrium
$[>$ embryonicEq[2];


```
        solns[2];
        \(\{\) VEHet \(=1\), VEHomo \(=0\), VEHomo \(<0\}\)
    > \#a boundary; coincident with feasibility
    \(>\operatorname{solns[3];}\)
        \(\left\{\right.\) VEHomo \(=-\) VEHet \(^{2}+\) VEHet,- VEHet \(t^{2}+\) VEHet \(=-V E H e t^{2}+V E H e t\), VEHet \(\left.<0\right\}\)
        \#Does not apply; VEHomo>0
        solns[4];
        \(\left\{\right.\) VEHomo \(=-\) VEHet \(t^{2}+\) VEHet,- VEHet \(t^{2}+\) VEHet \(=-\) VEHet \(t^{2}+\) VEHet, \(1<\) VEHet \(\}\)
        \#coincident with feasiblity
        solns[5];
        \(\{\) VEHet \(=1,0<\) VEHomo \(\}\)
        \(\{\) VEHet \(=1\), VEHomo \(=0,0<\) VEHomo \(\}\)
\(\left\{\begin{array}{l}>\operatorname{solns}[7] ; \\ \{V E H o m o=-V E H e t\end{array}{ }^{2}+V E H e t,-V E H e t^{2}+V E H e t=-V E H e t{ }^{2}+V E H e t, 0<\right.\) VEHet, VEHet
        \(<1\}\)
[ \(>\) \#soln[7] is feasible
    \(>\operatorname{solns[8];}\)
    \(\left\{\right.\) VEHomo \(=\frac{\text { VEHet }(-2 V E H e t ~}{+}\) VEHet \(\left.\left.{ }^{2}+1\right), \frac{\text { VEHet }(-2 V E H e t ~}{-3+V E H e t}{ }^{2}+1\right)\)
        \(=\frac{\text { VEHet }\left(-2 \text { VEHet }+ \text { VEHet }^{2}+1\right)}{-3+\text { VEHet }}, 0<\) VEHet, VEHet \(\left.<1\right\}\)
        \(\left[>\operatorname{plot}\left(\frac{\text { VEHet }\left(-2 \text { VEHet }+1+\text { VEHet }^{2}\right)}{-3+\text { VEHet }}\right.\right.\), VEHet \(\left.=0 . .1\right):\)
    \(>\) \#We plot this function for \(0<\) VEHet<1. VEHomo<0, therefore
        boundary condition does not apply.
        solns[9];
    \(\left\{V E H o m o=\frac{V E H e t ~}{}\left(-2\right.\right.\) VEHet \(\left.+V E H e t^{2}+1\right), \frac{V E H e t}{-3+V E H e t}\left(-2 V E H e t+V E H e t^{2}+1\right)\)
        \(=\frac{\text { VEHet }(-2 \text { VEHet }+ \text { VEHet }}{}\) + 1) \(-1<\) VEHet, VEHet \(\left.<3\right\}\)
    \(>\operatorname{solns[10];~}\)
    \(\left\{\right.\) VEHomo \(=\frac{\text { VEHet }(-2 V E H e t ~}{+}\) VEHet \(\left.{ }^{2}+1\right), \frac{\text { VEHet }(-2 V E H e t ~}{\left.-3+V E H e t^{2}+1\right)}-3+\) VEHet
        \(=\frac{\text { VEHet }\left(-2 \text { VEHet }+ \text { VEHet }^{2}+1\right)}{-3+\text { VEHet }}\), VEHet \(\left.<0\right\}\)
    \(\left[\begin{array}{l}>\operatorname{solns}[11] ; \\ \left\{V E H o m o=\frac{V E H e t}{}\left(-2 V E H e t+V E H e t^{2}+1\right)\right. \\ -3+V E H e t\end{array}, \frac{V E H e t(-2 \text { VEHet }+V E H e t}{}{ }^{2}+1\right)\)
    \(=\frac{\text { VEHet }\left(-2 \text { VEHet }+ \text { VEHet }^{2}+1\right)}{-3+\text { VEHet }}, 3<\) VEHet \(\}\)
```

solns[12];
ror, invalid subscript selector
\#No more solutions
\#Find when the modulus of the second eigenvalue is 1.
solns $:=\operatorname{solve}(\operatorname{abs}(E q 4 E V[2])=1)$:
\#No additional solutions found.
\#This means the stability at VEHet=1 and VEHomo=VEHet-VEHet^2 is
inconclusive. This equilibrium does not exist when
VEHomo<VEHet-VEHET^2. We need to test VEHomo>VEHet-VEHet^2
while VEHet is not 1.
\#Take a point, VEHet=.8, VEHomo=. 9
$\operatorname{subs}(V E H e t=.8, V E H o m o=9, E q 4 E V[1])$;
1.197029685
\#This equilibrium is unstable for VEHomo>VEHet-VEHet^2.
\#Let's work on the VEHet=1 condition.
$\operatorname{subs}($ VEHet $=1, m y G p p)$;
1
$\operatorname{subs}($ VEHet $=1$, myGmm $)$;
0
\#The VEHet=1 condition collapses to all non-Medea individuals in the population.
\#Case 2) Maternal Fitness only, No
parental fitness effects; mu0=0 and mu1=1
\#We begin by introducing the simplifications.
nextGppMaternal $:=\operatorname{subs}(V S H o m o=1, V E H o m o=1, V S H e t=1, V E H e t=1, \mu 0=0, \mu 1=1$, nextGpp) :
nextGmmMaternal $:=\operatorname{subs}(V S H o m o=1, V E H o m o=1, V S H e t=1$, VEHet $=1, \mu 0=0, \mu 1=1$, nextGmm) :
nextGmpMaternal $:=\operatorname{subs}(V S H o m o=1, V E H o m o=1, V S H e t=1, V E H e t=1, \mu 0=0, \mu l=1$, nextGmp) :
\#Solve for the 4 biologically relevant equilibria
maternalEq := solve $(\{$ nextGppMaternal $=G p p$, nextGmmMaternal $=G m m\},[G p p, G m m])$:
\#All Medea alleles
maternalEq[1];

$$
\begin{equation*}
[G p p=0, G m m=1] \tag{36}
\end{equation*}
$$

```
\(>E V 1:=\operatorname{simplify}(\) Eigenvalues \((\) subs (maternalEq[1], VEHomo \(=1, V S H o m o=1, V S H e t=1\),
    \(V E H e t=1, \mu 0=0, \mu l=1\), MyJacobian \())\) );
\[
\text { EVI := } \left.\begin{array}{c}
0  \tag{37}\\
\frac{1}{2} \frac{\text { VDHomo }+ \text { VDHet }}{\text { VDHomo }}
\end{array}\right]
\]
solve \((E V 1[2]=1)\);
\[
\begin{equation*}
\{\text { VDHet }=\text { VDHomo, } V D H \text { ното }=\text { VDHoто }\} \tag{38}
\end{equation*}
\]
\(>\) \#When VDHet>VDHomo, this equilibrium is unstable. It is stable at VDHomo>VDHet and inconclusive at the equality.
```

```
[\mp@code{> #No non-Medea Individuals }
```

```
[\mp@code{> #No non-Medea Individuals }
```

\#When VDHomosVDHet, this solution is biologically feasible.
\#When VDHet \leq VDHomo, this solution is biologically not feasible.
$E V 2:=\operatorname{simplify}($ Eigenvalues $($ subs $(G p p=0, G m m=m y G m m, G m p=1-m y G m m$, VEHomo
$=1$, VSHomo $=1$, VSHet $=1$, VEHet $=1, \mu 0=0, \mu l=1$, MyJacobian $))$):
\#These eigenvalues are complicated. The stategy is to solve for when modulus of the eigenvalues equal 1 to divide parameter space into regions and then test stability in each region. These are potential boundaries. We only consider $0<V D H e t<1$ and $0<\mathrm{VDHomo<1}$.
$>\operatorname{checkEV21}:=\operatorname{solve}(\operatorname{abs}(E V 2[1])=1):$
$>$ checkEV21[1];

$$
\begin{equation*}
\left\{\text { VDHet }=\left(\frac{1}{2}-\frac{1}{2} \mathrm{I}\right) \text { VDHomo, VDHomo }=\text { VDHomo }\right\} \tag{46}
\end{equation*}
$$

[$>$ \#Not a boundary; complex.
$>$ checkEV21[2];

$$
\begin{equation*}
\left\{V D H e t=\left(\frac{1}{2}+\frac{1}{2} \mathrm{I}\right) \text { VDHomo, } V D H \text { omo }=\text { VDHomo }\right\} \tag{47}
\end{equation*}
$$

$>$ \#Not a boundary; complex.
checkEV21[3];
VDHet $=$ VDHet, VDHomo

$$
\begin{equation*}
\left.=\frac{-V^{2} H e t ~+V D H e t ~^{2}+1+\sqrt{-7 V D H e t ~^{2}+4 V D H e t ~^{3}+2 V D H e t ~+1}}{\text { VDHet }-2}\right\} \tag{48}
\end{equation*}
$$

$>$ \#To see if solution [3] has solutions in biologically relevant space, we plot this solution.
$\left[\begin{array}{l}>\operatorname{plot}\left(\frac{\text { VDHet }^{2}+1-V D H e t+\sqrt{-7 V D H e t ~^{2}+4 V D H e t ~^{3}+1+2 V D H e t}}{V D H e t-2}, \text { VDHet }=0 . .1,\right. \\ \quad \text { VDHomo }) ;\end{array}\right.$

$$
\begin{aligned}
& \text { [> \#This solution is biologically relevant. } \\
& >\text { checkEV21[5]; } \\
& \left\{\text { VDHet }=\left(\frac{1}{4}(3+2 \sqrt{2})^{1 / 3}+\frac{1}{4(3+2 \sqrt{2})^{1 / 3}}-\frac{1}{2} \mathrm{I} \sqrt{3}\left(-\frac{1}{2}(3+2 \sqrt{2})^{1 / 3}\right.\right.\right. \\
& \left.\left.\left.+\frac{1}{2(3+2 \sqrt{2})^{1 / 3}}\right)\right) \text { VDHomo, } \text { VDHomo }=\text { VDHomo }\right\} \\
& \text { [}>\text { \#This solution contains imaginary terms. } \\
& \text { > checkEV21[6] } \\
& \left\{\text { VDHet }=\left(-\frac{1}{2}(3+2 \sqrt{2})^{1 / 3}-\frac{1}{2(3+2 \sqrt{2})^{1 / 3}}\right) \text { VDHomo, VDHomo }=\text { VDHomo }\right\} \\
& \text { [> \#To see if solution [6] has solutions in biologically relevant } \\
& \text { space, we plot this solution. } \\
& {\left[>\operatorname{plot}\left(\left(-\frac{1}{2}(3+2 \sqrt{2})^{1 / 3}-\frac{1}{2(3+2 \sqrt{2})^{1 / 3}}\right) \text { VDHomo, VDHomo }=0 . .1\right)\right. \text {; }}
\end{aligned}
$$

[^0]\[

$$
\begin{equation*}
\{V D H e t=V D H e t, V D H o m o= \tag{54}
\end{equation*}
$$

\]

$$
-\frac{-V_{D H e t}{ }^{2}-1-V D H e t ~+\sqrt{-7 V D H e t^{2}-4 V D H e t}+1-2 V D H e t}{V D H e t ~} 2
$$

$$
=\operatorname{plot}\left(\frac{V D H e t^{2}-V D H e t+1+\sqrt{4 V D H e t}{ }^{3}-7 V D H e t^{2}+2 V D H e t+1}{V D H e t-2}, \text { VDHet }=0 . .1\right):
$$

\#VDHomo is negative over the range of VDHet.
checkEV21[10];

$$
\left\{\text { VDHet }=\frac{235}{128}+\frac{25}{128}(827+384 \sqrt{2})^{1 / 3}+\frac{1825}{128(827+384 \sqrt{2})^{1 / 3}}\right.
$$

$$
-\frac{9}{8}\left(\frac{1}{12}(827+384 \sqrt{2})^{1 / 3}+\frac{73}{12(827+384 \sqrt{2})^{1 / 3}}+\frac{11}{12}\right)^{2}, \text { VDHomo }=
$$

$$
-\frac{3}{4}\left(\frac{1}{12}(827+384 \sqrt{2})^{1 / 3}+\frac{73}{12(827+384 \sqrt{2})^{1 / 3}}+\frac{11}{12}\right)^{2}+\frac{283}{192}
$$

$$
\left.+\frac{41}{192}(827+384 \sqrt{2})^{1 / 3}+\frac{2993}{192(827+384 \sqrt{2})^{1 / 3}}\right\}
$$

$\operatorname{evalf}(\operatorname{checkEV21[10])}$

$$
\begin{equation*}
\{V D H e t=-1.136861168, V D H o m o=0.965363643\} \tag{56}
\end{equation*}
$$

```
relevant.
checkEV21[11];
rror, invalid subscript selector
```

\#solution has negative values of vDHet. Therefore, not
\#No more solutions
\#We now focus on boundary conditions based on the second eigenvalue.
checkEV22 := solve $(\operatorname{abs}(E V 2[1])=1)$:
\#These solutions are the same as those for the first eigenvalue.
No additional boundary conditions.
$>$ \#We now test points on each side of the boundary condition.
$>\operatorname{subs}($ VDHet $=.4, V D H o m o=.2, E V 2)$;

$$
\left[\begin{array}{l}
0.7294901198 \tag{57}\\
0.6737621252
\end{array}\right]
$$

$>$ \#The first eigenvalue is greater than one when VDHomo<-(-VDHet^2 -VDHet+1+sqrt (4VDHet^3-7VDHet\&2+2VDHet+1)) /(VDHet-2). Thefore,
the equilibrium is unstable. It is stable when the inequality reverses and the analysis is inconclusive at the equality.
\#All non-Medea individuals
maternalEq[3];

$$
\begin{equation*}
[G p p=1, G m m=0] \tag{59}
\end{equation*}
$$

simplify (Eigenvalues(subs(maternalEq[3],VSHomo $=1, V E H o m o=1, V S H e t=1, V E H e t=1$, $\mu 0=0, \mu l=1$, MyJacobian $))$);

$$
\left[\begin{array}{c}
0 \tag{60}\\
\frac{1}{2} V D H e t+\frac{1}{2}
\end{array}\right]
$$

$$
\begin{equation*}
0.8670141061,-1.345483006 \tag{65}
\end{equation*}
$$

$\operatorname{allvalues}(\operatorname{subs}(V D H e t=.2, V D H o m o=.05, m y G p p))$
$-0.008581188400,-8.469887707$
\#We now test this solution with the other two genotypes. Gmm and Gmp must equal 0 for this solution to be relevant. Gmm and Gmp are not 0 for any values of $0<$ VDHet<1.
testGmm $:=\operatorname{subs}\left(\right.$ VDHomo $=\frac{1}{2}$ VDHet $-\frac{3}{4}-\frac{1}{4} \sqrt{8 \text { VDHet }+1}$, myGmm $):$
testGmp $:=$ subs $\left(\right.$ VDHomo $=\frac{1}{2}$ VDHet $-\frac{3}{4}-\frac{1}{4} \sqrt{8 V D H e t ~}+1,1-$ myGpp
$-m y G m m):$
$\operatorname{plot}(\{$ testGmp, testGmm $\}, V D H e t=-5 . .5$, Genotypes $=0 . .1):$
solve $($ myGmm $=0)$;
$\{V D H e t=1, V D H o m o=V D H o m o ~\},\{V D H e t=1, V D H o m o=V D H o m o ~\}$
\#There are no other boundaries for feasiblity.
\#The only values possible are when VDHomo>-(-VDHet^2-1+VDHet+ sqrt (4*VDHet^3-7*VDHet^2+2*VDHet+1)) / (VDHet-2)
\#We now look at stability. We begin by finding eigenvalues.

Eq4EV $:=\operatorname{simplify}($ Eigenvalues $(\operatorname{subs}($ maternalEq[4], VEHomo $=1, V S H o m o=1, V E H e t=1$, VSHet $=1, \mu 0=0, \mu 1=1$, MyJacobian $))$):
\#To be unstable, the eigenvalues have to be >1. Let's find when they are equal to 1.

```
    Eq4EV1 := solve(abs(Eq4EV[1])=1);
Warning, solutions may have been lost
        Eq4EV1 :=
> solve(abs(Eq4EV[2])=1);
Warning, solutions may have been lost
    #Maple was unable to find any solutions to these equations. One
    possibility is that are no solutions in the biologically
    relevant range. The second possibility is that Maple could not
    find them. Therefore we turn to simulation.
    #By simulation we find that the eigenvalues are always greater
    than 1 for all values of VDHomo and VDHet in the feasible
    region.
```

 > \#Case 3) Parental Fitness only, No
 embryonic fitness effects; muO=0 and mu1=1
 \#We begin by introducing the simplifications
 nextGppParental \(:=\operatorname{subs}(V S H o m o=V D H o m o, V S H e t=V D H e t, V E H e t=1, V E H o m o=1, \mu 0\)
 \(=0, \mu l=1\), nextGpp \():\)
 \(>\) nextGmmParental \(:=\operatorname{subs}(V S H o m o=V D H o m o, V S H e t ~=V D H e t, V E H e t=1, V E H o m o=1, \mu 0\)
 \(=0, \mu l=1\), nextGmm) :
 nextGmpParental \(:=\operatorname{subs}(\) VSHomo \(=V D H o m o, V S H e t ~=V D H e t, V E H e t=1, V E H o m o=1, \mu 0\)
 \(=0, \mu l=1\), nextGmp) :
 parentalEq \(:=\) solve \((\{\) nextGppParental \(=G p p\), nextGmmParental \(=G m m\},[G p p, G m m])\) :
 \#Solve for the 4 biologically relevant equilibria
 \#Only Medea Homozygotes
 \([G p p=0, G m m=1]\)

$$
\begin{align*}
& \left.+ \text { VDHet }^{2}+2 \text { VDHomo }-3 \text { VDHet VDHomo }+ \text { VDHet }^{2} \text { VDHomo }\right), G m m \\
& =\left(\text { VDHet }^{2}+1-2 \text { VDHet }\right) /\left(1+\text { VDHomo }^{2}-2 \text { VDHet }+ \text { VDHet }^{2}+2 \text { VDHomo }^{2}\right. \\
& \left.-3 \text { VDHet VDHomo }+ \text { VDHet }^{2} \text { VDHomo) }\right] \\
& \text { > myGpp }:=\left(\left(\text { VDHet }^{2}-\text { VDHet }+ \text { VDHomo }\right) \text { VDHomo }\right) /\left(-2 \text { VDHet }+1+\text { VDHet }^{2}\right. \\
& \left.+2 \text { VDHomo }+ \text { VDHomo }^{2}-3 \text { VDHet VDHomo }+ \text { VDHet }^{2} \text { VDHomo }\right) ; \\
& \text { myGpp := } \\
& \left(\left(\text { VDHet }^{2}-\text { VDHet }+ \text { VDHomo }\right) \text { VDHomo }\right) /\left(1+\text { VDHomo }^{2}-2 \text { VDHet }+ \text { VDHet }^{2}\right. \\
& \left.+2 \text { VDHomo }-3 \text { VDHet VDHomo }+ \text { VDHet }^{2} \text { VDHomo }\right) \\
& m y \text { Gmm }:=\left(1-2 V D H e t+\text { VDHet }^{2}\right) /\left(-2 \text { VDHet }+1+\text { VDHet }^{2}+2 \text { VDHomo }^{2}+\text { VDHomo }^{2}\right. \\
& \left.-3 \text { VDHet VDHomo }+ \text { VDHet }^{2} \text { VDHomo }\right) \text {; } \\
& \text { myGmm := } \\
& \left(\text { VDHet }^{2}+1-2 \text { VDHet }\right) /\left(1+\text { VDHomo }^{2}-2 \text { VDHet }^{2}+\text { VDHet }^{2}+2 \text { VDHomo }^{2}\right. \\
& \left.-3 \text { VDHet VDHomo }+ \text { VDHet }^{2} \text { VDHomo }\right) \\
& >\operatorname{solve}(m y G p p=0) \text {; } \\
& \{V D H e t=V D H e t, V D H o m o=-V D H e t ~ 2 ~ V D H e t ~\},\{V D H e t ~=V D H e t, V D H o m o=0\} \tag{83}\\
& 0.16 \tag{84}\\
& \operatorname{subs}(\text { VDHet }=.8, V D H o m o=.1, m y G p p) ; \tag{85}\\
& \text {-0.08108108108 } \tag{86}\\
& \text { solve (} m y G p p=1 \text {); } \\
& \{V D H e t=1, V D H o m o=V D H o m o ~\},\{V D H e t=1+2 \text { VDHomo }, V D H o m o=V D H o m o ~\} \tag{87}\\
& \text { solve (} m y \text { Gmm = 1); } \tag{88}
\end{align*}
$$

> \#Transitions not in biologically relevant space.
> solve $(m y G m m+m y G p p=0)$;
> VDHet $=$ VDHet, VDHomo $=\left(-\frac{1}{2}\right.$ VDHet $\left.+\frac{1}{2} \sqrt{\text { VDHet }^{2}-4}\right)($ VDHet -1$\left.)\right\},\{$ VDHet $=$ VDHet, ,VDHomo $=\left(-\frac{1}{2}\right.$ VDHet $\left.-\frac{1}{2} \sqrt{\text { VDHet }^{2}-4}\right)($ VDHet -1$\left.)\right\}$
> solve $(m y G m m+m y G p p=1)$;
> $\{V D H e t=V D H e t, V D H o m o=0\},\{V D H e t=1, V D H o m o=V D H o m o ~\}$
> \#Now look at stability
$=V D H e t, V E H e t=1, V E H o m o=1, \mu 0=0, \mu l=1$, My Jacobian $)))$;

$$
\begin{align*}
& \text { Eq4EV }:=\left[\left[\frac{1}{2} \frac{1}{\text { VDHomo }}(2 \text { VDHomo }- \text { VDHet VDHomo }\right.\right. \tag{92}\\
& + \text { (- VDHomo (-4 VDHomo }+4 \text { VDHet VDHomo }- \text { VDHet }^{2} \text { VDHomo } \\
& \left.\left.\left.\left.+4 \text { VDHet }^{3}+4 \text { VDHet }-8 \text { VDHet }^{2}\right)\right)^{1 / 2}\right)\right] \text {, } \\
& {\left[-\frac{1}{2} \frac{1}{\text { VDHomo }}(-2 \text { VDHomo }+ \text { VDHet VDHomo }\right.} \\
& + \text { (- VDHomo (-4 VDHomo }+4 \text { VDHet VDHomo }- \text { VDHet }^{2} \text { VDHomo } \\
& \left.\left.\left.\left.\left.+4 \text { VDHet }^{3}+4 V D H e t-8 V D H e t^{2}\right)\right)^{1 / 2}\right)\right]\right] \\
& >\text { \#TO be unstable, the modulus of the eigenvalues have to be }>1 \text {. } \\
& \text { We find when they are equal to } 1 . \\
& \text { solve }(\operatorname{abs}(E q 4 E V[1])=1) \text {; } \\
& \{\text { VDHet }=1, \text { VDHomo }<0\},\{V D H e t=1, V D H o m o=0, \text { VDHomo }<0\},\{\text { VDHomo }= \tag{93}\\
& \left.-V D H e t^{2}+V D H e t,-V D H e t t^{2}+V D H e t=-V D H e t^{2}+V D H e t, V D H e t<0\right\},\{V D H o m o= \\
& \left.-V D H e t^{2}+V D H e t,-V D H e t^{2}+V D H e t=-V D H e t ~ 2 ~ V D H e t, ~ 1<V D H e t ~\right\},\{V D H e t=1,0 \\
& <V D H o m o\},\{\text { VDHet }=1, V D H o m o=0,0<V D H o m o\},\left\{\text { VDHomo }=-V D H e t^{2}\right. \\
& \left.+ \text { VDHet },- \text { VDHet }^{2}+\text { VDHet }=-V_{D H e t}{ }^{2}+\text { VDHet, } 0<\text { VDHet, VDHet }<1\right\},\{\text { VDHomo } \\
& =\frac{\left(\text { VDHet }^{2}+1-2 \mathrm{VDHet}\right) \mathrm{VDHet}}{-3+\text { VDHet }}, \frac{\left(\text { VDHet }^{2}+1-2 \mathrm{VDHet}\right) \mathrm{VDHet}}{-3+\text { VDHet }} \\
& \left.=\frac{\left(\text { VDHet }^{2}+1-2 \text { VDHet }\right) \text { VDHet }}{-3+\text { VDHet }}, 0<\text { VDHet, VDHet }<1\right\},\{\text { VDHomo } \\
& =\frac{\left(\text { VDHet }^{2}+1-2 \mathrm{VDHet}\right) \mathrm{VDHet}}{-3+\text { VDHet }}, \frac{\left(\text { VDHet }^{2}+1-2 \mathrm{VDHet}\right) \mathrm{VDHet}}{-3+\text { VDHet }} \\
& \left.=\frac{\left(\text { VDHet }^{2}+1-2 \text { VDHet }\right) \text { VDHet }}{-3+\text { VDHet }}, 1<\text { VDHet, VDHet }<3\right\},\{\text { VDHomo } \\
& =\frac{\left(\text { VDHet }^{2}+1-2 \mathrm{VDHet}\right) \mathrm{VDHet}}{-3+V D H e t}, \frac{\left(\text { VDHet }^{2}+1-2 \mathrm{VDHet}\right) \mathrm{VDHet}}{-3+\mathrm{VDHet}} \\
& \left.=\frac{\left(\text { VDHet }^{2}+1-2 \text { VDHet }\right) \text { VDHet }}{-3+\text { VDHet }}, \text { VDHet }<0\right\},\{\text { VDHomo } \\
& =\frac{\left(\text { VDHet }^{2}+1-2 \mathrm{VDHet}\right) \mathrm{VDHet}}{-3+\mathrm{VDHet}}, \frac{\left(\text { VDHet }^{2}+1-2 \mathrm{VDHet}\right) \mathrm{VDHet}}{-3+\text { VDHet }} \\
& \left.=\frac{\left(\text { VDHet }^{2}+1-2 \text { VDHet }\right) \text { VDHet }}{-3+\text { VDHet }}, 3<\text { VDHet }\right\}
\end{align*}
$$

> \#Check the stability of only Medea homozygous equilibrium
$>$ Eqt1 $:=\operatorname{simplify}($ Eigenvalues $($ subs (embryonicEqMt[1],VSHomo $=1, V D H o m o=1$, VSHet
$=1$, VDHet $=1$, VEHomo $=$ VEHet \cdot VEHet, $\mu 0=0, \mu 1=1-t 1$, My Jacobian $))$;

$$
\text { Eqt1 }:=\left[\begin{array}{c}
0 \tag{97}\\
-\frac{1}{2} \frac{-2+t 1}{\text { VEHet }}
\end{array}\right]
$$

solve $($ Eqt $1[2]=1$, VEHet $)$

$$
\begin{equation*}
1-\frac{1}{2} t 1 \tag{98}
\end{equation*}
$$

\gg solve $($ myGmm $=0)$;

$$
\begin{equation*}
\{V E H e t=0, t 1=t 1\} \tag{103}
\end{equation*}
$$

solve $($ myGmm $=1$, VEHet $)$;

$$
\begin{equation*}
1-\frac{1}{2} t 1 \tag{104}
\end{equation*}
$$

$$
\operatorname{subs}(t l=.01, V E H e t=.51, m y G m m) ;
$$

$$
\begin{equation*}
0.3434604954 \tag{105}
\end{equation*}
$$

$\operatorname{subs}(t l=.4$, VEHet $=.9$, myGmm $)$;
1.430500874
(106)
\#This equilibrium is only biologically feasible when VEHet<=1(1/2) t1.
Eqt2 $:=$ simplify (Eigenvalues (subs $(\mathrm{Gpp}=0, \mathrm{Gmm}=\mathrm{myGmm}, \mathrm{Gmp}=1-\mathrm{myGmm}$, VSHomo
$=1, V D H$ omo $=1, V S H e t=1, V D H e t=1, V E H o m o=V E H e t \cdot V E H e t, \mu 0=0, \mu l=1-t 1$,
MyJacobian))) :
$[>\operatorname{solns}:=\operatorname{solve}(\operatorname{abs}(E q t 2[1])=1)$:
$>\operatorname{solns[1];}$

$$
\left\{V E H e t=1-\frac{1}{2} t l, t l=t 1\right\}
$$

\gg plot $\left(\left\{-\frac{1}{2} \frac{1}{t l}\left(\left(\frac{1}{3}\left(-64+54 t 1+6 \sqrt{-192 t 1+81 t 1^{2}}\right)^{1 / 3}\right.\right.\right.\right.$

$$
\left.\left.\left.\left.+\frac{16}{3\left(-64+54 t 1+6 \sqrt{-192 t 1+81 t 1^{2}}\right)^{1 / 3}}-\frac{1}{3}\right)^{2}-1\right)\right\}, t 1=0 . .1\right):
$$

[> \#Plot indicates solutions when VEHet<0 for $0<t 1<1$
$[>\operatorname{solns[2];}$
$\left\{V E H e t=\right.$ VEHet,$\left.t 1=\frac{2 \text { VEHet }+\sqrt{-4 V E H e t^{2}+1}-\frac{-V E H e t ~}{}+1+\sqrt{-4 V E H e t^{2}+1}}{\text { VEHet }}\right\}$
$>\operatorname{plot}\left(-\frac{1}{2} \frac{-\frac{1}{2}+\frac{1}{2} \sqrt{1+4 t 1}+t 1}{t l}, t l=0 . .1\right):$
\#Plot indicates solutions when VEHet<0 for $0<t 1<1$
$>\operatorname{solns[3];}$
$\left\{\right.$ VEHet $=$ VEHet, $\left.t 1=\frac{2 \text { VEHet }-\sqrt{-4 \text { VEHet }^{2}+1}+\frac{\text { VEHet }-1+\sqrt{-4 V E H e t^{2}+1}}{\text { VEHet }}}{\text { VEHet }^{2}}\right\}$
(107)
(108)
$=>$
$>\operatorname{plot}\left(-\frac{1}{2} \frac{-\frac{1}{2}-\frac{1}{2} \sqrt{1+4 t 1}+t 1}{t 1}, t 1=0 . .1\right.$, VEHet $\left.=0 . .1\right)$;

$$
\begin{aligned}
& {\left[\begin{array}{l}
\\
=t 1, \text { VEHet }
\end{array}\right):} \\
& {\left[>\operatorname{plot}\left(\left\{\frac{1}{4} \frac{1-2 t 1+\sqrt{1+4 t 1}}{t 1}, 1-\frac{1}{2} \mathrm{t} 1, \frac{1}{2 t 1}, \text { possibleSolution }\right\}, t 1=0 \ldots, \text { VEHet }=0\right.\right.} \\
& \text {..1) } \\
& \text { Warning, unable to evaluate } 2 \text { of the } 6 \text { functions to numeric } \\
& \text { values in the region; see the plotting command's help page to } \\
& \text { ensure the calling sequence is correct } \\
& \text { [}>\text { \#The red curve is } 1 /(2 t 1) \text {. } \\
& \text { \#The gold curve is } 1-(1 / 2) \text { t1. } \\
& \text { \#The blue curve is } 1 / 4 \text { (1-2t1 + sqrt(1+4t1))/t1. } \\
& >\text { \#The green curve corresponds to the first solution of the } \\
& \text { possibleSolutions variable. }
\end{aligned}
$$

\#The warning occurs because the other solutions of the possibleSolutions curves lie outside the biologially relevant (plotted range).
\#We now test points within each region.
$\operatorname{subs}(t 1=.1$, VEHet $=.1, m y G m m)$;
0.05291146688
(116)
$\operatorname{evalf}(\operatorname{subs}(t 1=.1, V E H e t=.1, \operatorname{abs}(E q t 2))) ;$

$$
\left[\begin{array}{c}
9.039257285 \tag{117}\\
0.1061727130
\end{array}\right]
$$

$\operatorname{subs}(t 1=.1$, VEHet $=.6, m y G m m)$;

$$
\begin{equation*}
0.4484026267 \tag{118}
\end{equation*}
$$

$\operatorname{evalf}(\operatorname{subs}(t 1=.1, V E H e t=.1, \operatorname{abs}(E q t 2)))$;

$$
\left[\begin{array}{c}
9.039257285 \tag{119}\\
0.1061727130
\end{array}\right]
$$

$\operatorname{subs}(t 1=.59$, VEHet $=.56, \mathrm{myGmm})$;

$$
\begin{equation*}
0.5477261196 \tag{120}
\end{equation*}
$$

$\operatorname{evalf}(\operatorname{subs}(t 1=.95, V E H e t=.4, \operatorname{abs}(E q t 2)))$;

$$
\left[\begin{array}{c}
1.553967066 \tag{121}\\
0.6954858985
\end{array}\right]
$$

$\operatorname{evalf}(\operatorname{subs}(t 1=.95, V E H e t=.2, \operatorname{abs}(E q t 2)))$;

$$
\left[\begin{array}{c}
4.342682219 \tag{122}\\
0.3161136814
\end{array}\right]
$$

\#The gold line defines the region of infeasibility. Points above the line are not feasible. Points below are feasible.
\#The red curve is irrelevant because it is in the region of biological infeasibility.
\#Points above the blue line are stable (modulus of all eigenvalues is less than 1) and points below the blue line are not stable (modulus of at least one eigenvalue greater than 1). The green line corresponds to points with a modulus of 1 but does not correspond to changes in stability.
$\vee \vee \vee \vee \vee \vee$ \#he equilibrium with only non-Medea individuals embryonicEqMt[3];

$$
\begin{equation*}
[G p p=1, G m m=0] \tag{123}
\end{equation*}
$$

simplify (Eigenvalues (subs (embryonicEqMt[3],VSHomo $=1, V D H o m o=1, V S H e t=1, V D H e t$ $=1, V E H o m o=V E H e t \cdot V E H e t, \mu 0=0, \mu l=1-t 1$, MyJacobian $))$;

$$
\begin{aligned}
& {\left[\begin{array}{l}
>\text { solve }(m y \text { Gmm }=1) ; \\
\{\text { VEHet }=0, t l=t 1\},\{\text { VEHet }=V E H e t, t l
\end{array}\right.} \\
& \left.=\frac{2 \text { VEHet }^{2}-V E H e t ~+1+\sqrt{4 V E H e t} t^{4}-8 V E H e t^{3}+5 V E H e t^{2}-2 V E H e t+1}{V E H e t^{3}}\right\}, \\
& \{V E H e t=V E H e t, t 1= \\
& \left.-\frac{-2 \text { VEHet }^{2}+\text { VEHet }^{2}-1+\sqrt{4 \text { VEHet }^{4}-8 \text { VEHet }^{3}+5 \text { VEHet }^{2}-2 V E H e t ~}+1}{\text { VEHet }^{3}}\right\} \\
& \text { \#This is the same boundary as discovered with Gpp=0; } \\
& \text { solve }(m y G m m=0) \text {; } \\
& \{V E H e t=1, t 1=t 1\},\{V E H e t=1, t 1=t 1\} \\
& \text { solve }(m y G m m+m y G p p=0) \text {; } \\
& \text { VEHet }=\text { VEHet, } t 1 \\
& \left.=\frac{2 \text { VEHet }^{2}+\text { VEHet }^{2}-1+\sqrt{-8 V E H e t}+16 \text { VEHet }^{3}-7 \text { VEHet }^{2}-2 V E H e t ~+1}{\text { VEHet }^{3}}\right\}, \\
& \{V E H e t=V E H e t, t 1= \\
& \left.-\frac{-2 \text { VEHet }^{2}-\text { VEHet }^{2}+1+\sqrt{-8 \text { VEHet }^{4}+16 \text { VEHet }^{3}-7 \text { VEHet }^{2}-2 \text { VEHet }+1}}{\text { VEHet }^{3}}\right\} \\
& \text { [> \#same boundaries as above }
\end{aligned}
$$

$$
\begin{align*}
& \left.=\frac{2 \text { VEHet }^{2}+V E H e t ~}{-1+\sqrt{-4 V E H e t}+8 \text { VEHet }^{3}-3 V E H e t^{2}-2 V E H e t+1}\right) ~ V E H e t^{3} \quad, \\
& \{V E H e t=\text { VEHet, } t 1= \\
& \left.-\frac{-2 \text { VEHet }^{2}-\text { VEHet }^{2}+1+\sqrt{-4 V E H e t}+8 \text { VEHet }^{3}-3 \text { VEHet }^{2}-2 V E H e t+1}{\text { VEHet }^{3}}\right\}, \\
& \left\{V E H e t=V E H e t, t l=\frac{1}{V E H e t^{3}(3 V E H e t-1)}\left(2 V E H e t^{3}+3 V E H e t^{2}-2 V E H e t+1\right.\right. \\
& \left.\left.+\sqrt{4 \text { VEHet }^{6}-7 \text { VEHet }^{4}-4 \text { VEHet }^{3}+10 \text { VEHet }^{2}-4 V E H e t ~}+1\right)\right\},\{V E H e t=V E H e t, \\
& t l=-\frac{1}{V E H e t^{3}(3 V E H e t-1)}\left(-2 \text { VEHet }^{3}-3 V E H e t^{2}+2 \text { VEHet }-1\right. \\
& \left.\left.+\sqrt{4 \text { VEHet }^{6}-7 \text { VEHet }^{4}-4 \text { VEHet }^{3}+10 \text { VEHet }^{2}-4 \text { VEHet }^{2}+1}\right)\right\} \\
& >\operatorname{plot}\left(-\frac{1}{\text { VEHet }^{3}(3 \text { VEHet }-1)}\left(-2 \text { VEHet }^{3}-3 \text { VEHet }^{2}+2 \text { VEHet }-1\right.\right. \\
& \left.\left.+\sqrt{4 \text { VEHet }^{6}-7 \text { VEHet }^{4}-4 \text { VEHet }^{3}+10 \text { VEHet }^{2}-4 \text { VEHet }+1}\right), \text { VEHet }=0 . .1\right): \\
& \text { \#This boundary condition is identical to the boundary that } \\
& \text { seperates biologically relevant and irrelevant boundaries. } \\
& \operatorname{subs}(\text { VEHet }=.49, t 1=.6, E q 4 E V) \text {; } \\
& {\left[\begin{array}{l}
0.6879413467 \\
0.9978382558
\end{array}\right]} \tag{137}\\
& \left.\left.+\sqrt{4 \text { VEHet }^{6}-7 \text { VEHet }^{4}-4 V E H e t^{3}+10 \text { VEHet }^{2}-4 V E H e t ~}+1\right)\right\},\{V E H e t=\text { VEHet }, \tag{139}
\end{align*}
$$

$$
\begin{aligned}
& t 1=-\frac{1}{V E H e t^{3}(3 \text { VEHet }-1)}\left(-2 \text { VEHet }^{3}-3 \text { VEHet }^{2}+2 \text { VEHet }-1\right. \\
& \left.\left.+\sqrt{4 \text { VEHet }^{6}-7 \text { VEHet }^{4}-4 \text { VEHet }^{3}+10 \text { VEHet }^{2}-4 \text { VEHet }+1}\right)\right\},\{V E H e t=1, t 1 \\
& =t 1\},\{V E H e t=V E H e t, t 1 \\
& \left.=\frac{2 \text { VEHet }^{2}+\text { VEHet }^{-1}+\sqrt{-4 \text { VEHet }^{4}+8 \text { VEHet }^{3}-3 \text { VEHet }^{2}-2 \text { VEHet }+1}}{\text { VEHet }^{3}}\right\}, \\
& \{V E H e t=V E H e t, t 1= \\
& \left.-\frac{-2 \text { VEHet }^{2}-\text { VEHet }+1+\sqrt{-4 \text { VEHet }^{4}+8 \text { VEHet }^{3}-3 \text { VEHet }}{ }^{2}-2 \text { VEHet }+1}{\text { VEHet }^{3}}\right\}
\end{aligned}
$$

\#No additional boundary conditions.
\#Eigenvalue[2] is greater than 1 for biologically feasible parameter space.
$\operatorname{subs}(V E H e t=1, t 1=t 1, E q 4 E V[2])$;

$$
\begin{equation*}
-\frac{1}{2} \frac{-t 1+2+\sqrt{t 1^{2}-4 t 1+4}}{-2+t 1} \tag{140}
\end{equation*}
$$

\#Eigenvalue[2] is equal to 1 when VEHet=1, therefore linear analysis is inconclusive
\#When VEHet $\neq 1$, and the equilibrium exists, it is unstable.

```
#Ward, Catherine
    #Supplemental Materials: Calculations for feasibility and
    stability of X-linked Medeas
```

$\left[\begin{array}{l}>\text { We load the model and calculate equilib: } \\ \text { of the Jacobian. } \\ >\end{array}\right.$
\gg
\gg
\#clear memory and initialize packages
[$>$ restart:clear:with(LinearAlgebra) :with(SolveTools) :
\#The following equations are for each genotype in the next
generation
\#We begin by defining intermediate quantities.
\#The naming convention is slightly different in this file. W is
still the divisor, but genotypes are now instead of using SM+,
S++, DMM, DM+, and D++, we use HetM, WTM, HomoF, HetF, and WTF.
Note that F at the end means female while M indicates male. All
fitnesses are embryonic and we simply use V and $\mathrm{V}^{\wedge} 2$.
$W:=\left((1 / 4) * \operatorname{HetF}^{*}(\operatorname{Het} M+W T M)+(1 / 2) * \operatorname{HomoF}^{*}(W T M+H e t M)\right) * V+((1 / 2)$
* WTF ${ }^{*}$ WTM $+(1 / 2)^{*}$ WTF $\left.^{*} \operatorname{HetM}\right)+\left(\operatorname{HetF}^{*} \operatorname{HetM}^{*}(1 / 4)+\right.$ HomoF $^{*} \operatorname{HetM}^{*}(1$
/2) $) * V^{*} V+\left(W T F^{*} \operatorname{HetM}^{*}(1 / 2)+\operatorname{HetF}^{*}\right.$ WTM $^{*}(1 / 4)+\operatorname{HetF}^{*} \operatorname{HetM}^{*}(1 / 4)$
+ HomoF * WTM $\left.^{*}(1 / 2)\right) * V+(1 / 2) * W T F * W T M$:
\#Now make non-Medea (wildtype) females
nextWTF $:=\operatorname{subs}(H e t M=1-W T F-H e t F-H o m o F-W T M,(1 / 2) * W T F * W T M / W):$
\#Now all genotypes
nextHetF $:=\operatorname{subs}(H e t M=1-W T F-H e t F-H o m o F-W T M,(W T F * H e t M *(1 / 2)+H e t F$
* WTM $^{*}(1 / 4)+\operatorname{HetF}^{*} \operatorname{HetM}^{*}(1 / 4)+$ HomoF $\left.\left.^{*} W_{T M}{ }^{*}(1 / 2)\right)^{*} V / W\right):$
nextHomoF $:=\operatorname{subs}(H e t M=1-W T F-H e t F-H o m o F-W T M,(H e t F * H e t M *(1 / 4)+H o m o F$
* $\left.\left.\operatorname{HetM}^{*}(1 / 2)\right){ }^{*} V^{*} V / W\right):$
nextWTM $:=\operatorname{subs}(H e t M=1-W T F-H e t F-H o m o F-W T M,((1 / 2) * W T F * W T M+(1 / 2)$
* WTF * HetM) / W) :
nextHetM $:=\operatorname{subs}(H e t M=1-W T F-H e t F-H o m o F-W T M,((1 / 4) * H e t F+(1 / 2) * H o m o F)$
* $(W T M+H e t M) * V / W):$
\#Solve for all the equilibria (takes about 30 secs on a PC with
2 gigs of RAM)
equilibria $:=$ solve $(\{$ nextHomoF $=H o m o F$, nextHetF $=H e t F$, next $W T F=W T F$, nextWTM
$=W T M\},[H o m o F, H e t F, W T F, W T M])$:
equilibria[1];

$$
\left[H o m o F=\frac{V}{1+V}, \operatorname{Het} F=0, W T F=0, W T M=0\right]
$$

equilibria [2];

$$
\begin{equation*}
\left[H o m o F=-\frac{V}{V-2}, H e t F=\frac{2 V-1}{V-2}, W T F=0, W T M=0\right] \tag{2}
\end{equation*}
$$

\#Note that when V>.5, HetF is negative (biologially infeasible).
equilibria[3];

$$
\left[H o m o F=0, H e t F=0, W T F=\frac{1}{2}, W T M=\frac{1}{2}\right]
$$

\#Warning: this equilibrium takes a few seconds to load (PC with
2 gigs of RAM). Output is supressed because expressions for the equilibrium fill about 200 pages of output.
allvalues(equilibria[4]) :
\#Now we move on to stability. Recall that if the modulus of any the eigenvalues of the Jacobian evaluated at a particular equilibrium is greater than 1 , the equilibrium is unstable.
\#Calculate the Jacobian Matrix
MyMatrix := Matrix ([[diff (nextWTF, WTF), diff (nextWTF, HetF), diff (nextWTF, HomoF), diff (nextWTF, WTM)], [diff (nextHetF, WTF), diff (nextHetF, HetF), diff (nextHetF, HomoF), diff (nextHetF, WTM)], [diff (nextHomoF, WTF), diff (nextHomoF, HetF), diff (nextHomoF, HomoF), diff (nextHomoF, WTM)], [diff (nextWTM, WTF), $\operatorname{diff}(n e x t W T M, H e t F), \operatorname{diff}(n e x t W T M, H o m o F), \operatorname{diff}(n e x t W T M, W T M)]]):$
[> \#Check stability of Medea Homozygote only equilibria
MyMatrix1 $:=$ Eigenvalues(subs(equilibria[1], MyMatrix));

$$
\text { MyMatrix }:=\left[\begin{array}{c}
0 \\
0 \\
0 \\
\frac{1}{2 V}
\end{array}\right]
$$

\#When V <.5, this eqilibrium is unstable. When $\mathrm{V}>.5$, it is stable.
[> \#Check stability of no non-Medea (has hets and homozygotes)
MyMatrix 2 := Eigenvalues(subs(equilibria[2],MyMatrix));

$$
\text { MyMatrix } 2:=\left[\begin{array}{c}
0 \\
0 \\
0 \\
2 \mathrm{~V}
\end{array}\right]
$$ biologically feasible V>.5.

[> \#Check the stability of the all non-Medea equilibria
$>$ MyMatrix3 := Eigenvalues(subs(equilibria[3], MyMatrix));

$$
\text { MyMatrix } 3:=\left[\begin{array}{c}
0 \\
0 \\
-\frac{1}{2} V \\
V
\end{array}\right]
$$

```
    #Checks the stability of the all non-Medea equilibria
    #Warning: this calculation takes a 5-10 mins on a PC with 2 gigs
    of RAM. Output is suppressed because the expressions have
    several pages worth of terms.
    MyMatrix4 := Eigenvalues(subs(equilibria[4], MyMatrix)) :
> \# Instead of solving for the modulus=1, we plot each modulus of the 4 eigenvalues for the all non-Medea equilibrium. Only three appear on the graph because the modulus of one of the eigenvalues is 0 for all values of \(V\). Recall that if any eigenvalue is greater than 1, the equilibrium is unstable.
\(=>\operatorname{plot}(\{\operatorname{abs}(\) MyMatrix4[1]), abs(MyMatrix4[2]), abs(MyMatrix4[3]), abs(MyMatrix4[4]) \},V \(=0\)..1, ModOfEigenvalues \(=0 . .2\) );
```


Figure S1

DeFinetti diagrams showing genotype trajectories for a Medea with a fitness cost. (A) The DeFinetti diagram plots the change in genotype frequencies over generations for a Medea with a 20% embryonic, multiplicative fitness cost, and values of $t_{1}=0$ and $t_{1}=1$. Population trajectories start with different ratios of two of the three genotypes (genotypes corresponding to points along each of the sides of the triangle). Green lines show trajectories that end at $2 / 3$ Medea homozygotes, $1 / 3$ Medea heterozygotes and no non-Medea individuals, the SIEAF (the stable internal equilibrium allele frequency). Red lines indicate population trajectories that end with loss of Medea individuals from the population. The unstable internal equilibrium frequency (UIEAF) is a point on the common trajectory taken by Medea-bearing populations that separates populations in which Medea spreads from those in which Medea is lost. (B) Plot of genotype frequencies over four generations for the Medea allele in (A), introduced into a population at a number of different starting genotype frequencies (black circles). When adults from within the G_{0} genotype distributions (each of the black circles) mate randomly with each other, a range of possible G_{1} genotype distributions, indicated by the green region, is obtained. When adults from G_{1} genotype distributions mate randomly, a set of possible G_{2} offspring genotype distributions defined by the red region is obtained; matings within each G_{2} genotype distribution result in the set of possible G_{3} offspring distributions defined by the yellow region; and G_{3} matings result in the G_{4} (blue) distribution. The G_{4} distribution, which is highly constrained, can be used to approximate genotype frequencies and allele fitness for specific Medea allele frequencies.

Figure S2

Diagrams partitioning $\left(\mathrm{V}_{\text {Het }}, \mathrm{V}_{\text {Homo }}\right)$ fitness parameter space into regions in which linear stability analysis indicates qualitatively similar behaviors are observed. (A) Parameter space diagram of ($\mathrm{V}_{\mathrm{P}, \mathrm{Het}} \mathrm{V}_{\mathrm{P}, \mathrm{Hom}}$) space (this diagram is identical for a Medea with embryonic fitness cost) . Qualitative behavior changes as each curve is crossed, with the occurrence of a bifurcation. Equilibrium 1, which consists of only the non-Medea genotype, is stable in all regions except at line a where the analysis is inconclusive. Equilibrium 2, which consists of all genotypes, is unstable in regions A and B and infeasible in C. Equilibrium 3, which consists of heterozygous and homozygous Medea, is infeasible in A, stable in B and unstable in C. Equilibrium 4, which consists of only the homozygous Medea genotype, is stable in A and unstable in B and C. Line a corresponds to a region in which Equilibrium 1 and 2 are coincident. Line b separates regions A and B. On this line, Equilibrium 3 and 4 are coincident. Transcritical bifurcation occurs as Equilibrium 3 moves through Equilibrium 4 (i.e. the two collide), with the two equilibria exchanging stability. Curve c separates regions B and C. On this curve, Equilibrium 2 and 3 are coincident. Transcritical bifurcation occurs as the two equilibria collide, with the two equilibria exchanging stability. (B) Parameter space diagram of ($\mathrm{V}_{\mathrm{D}, \mathrm{Het}}$, $\mathrm{V}_{\mathrm{D}, \mathrm{Homo}}$) space. Explanations are as in (A).

(A) Diagram partitioning ($t_{1}, V_{\text {P, Het }}$) parameter space into regions in which linear stability analysis indicates qualitatively similar behaviors are observed. Qualitative behavior changes as we cross each of these curves, with the occurrence of a bifurcation. Black lines partition parameter space for Medea elements with a parental fitness costs. Equilibrium 1, which consists of only the nonMedea genotype, is stable in all regions. Equilibrium 2, which consists of all genotypes, is unstable in regions A and B and infeasible in C. Equilibrium 3, which consists of heterozygous and homozygous Medea genotypes, is infeasible in C, stable in A and unstable in B. Equilibrium 4, which consists of only the homozygous Medea genotype, is stable in B and unstable in A and C . Line a corresponds to a Medea with no fitness cost. At line a, the stability of equilibrium 1 , the all nonMedea equilibrium, is inconclusive. Line b separates regions A and B. On this line, Equilibrium 3 and 4 are coincident. Transcritical bifurcation occurs as Equilibrium 3 moves through Equilibrium 4 (i.e. the two collide), with the two equilibria exchanging stability. Curve c separates regions A and C. On this curve, the Equilibrium 2 and 3 are coincident. (B) As in (A) except fitness costs are maternal.

[^0]: $[>$ \#VDHet<0; t
 $=>$
 $>$ checkEV21[7];
 $\left\{\right.$ VDHet $=\left(\frac{1}{4}(3+2 \sqrt{2})^{1 / 3}+\frac{1}{4(3+2 \sqrt{2})^{1 / 3}}+\frac{1}{2} \mathrm{I} \sqrt{3}\left(-\frac{1}{2}(3+2 \sqrt{2})^{1 / 3}\right.\right.$ $\left.\left.+\frac{1}{2(3+2 \sqrt{2})^{1 / 3}}\right)\right)$ VDHomo, VDHomo $=$ VDHomo $\}$
 [> \#complex; no transition
 $>$ checkEV21[8];
 $V D H e t=V D H e t, V D H o m o$
 $\left.=\frac{\text { VDHet }^{2}+1+V D H e t ~}{+} \sqrt{-7 V D H e t ~^{2}-4 V D H e t ~^{3}+1-2 V D H e t}\right) ~ V$
 $[>$ \#complex, no transition
 $[>$ checkEV2l[9];

